Topic 10

Multi-pitch Analysis

What is pitch?

 "Common elements of music are **pitch**, rhythm, dynamics, and the sonic qualities of timbre and texture."

```
---- Wikipedia
```

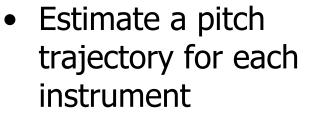
- An auditory perceptual attribute in terms of which sounds may be ordered from low to high.
- For (quasi) harmonic sound e.g. a flute note, it is well defined by the Fundamental Frequency (F0).

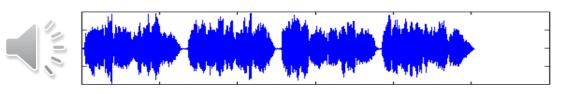
• A mixture of (quasi) harmonic sounds has multiple pitches (F0s).

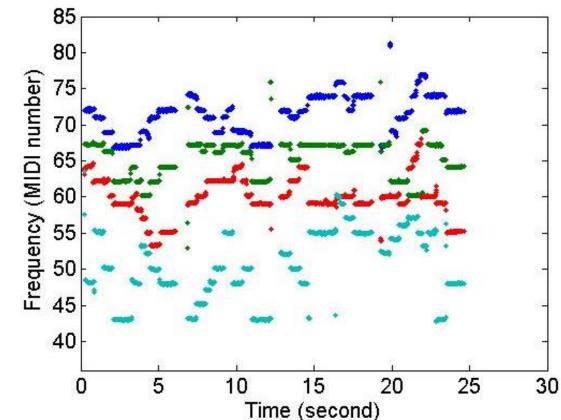
ECE 477 - Computer Audition, Zhiyao Duan 2023

Multi-pitch Analysis of Polyphonic Music

 Given polyphonic music played by several harmonic instruments







Why is it important?

- A fundamental problem in computer audition for harmonic sounds
- Many potential applications
 - Automatic music transcription
 - Harmonic source separation
 - Melody-based music search
 - Chord recognition
 - Music education

—

How difficult is it?

 Let's do a test! 	Chord 1	Chord 2
 Q1: How many pitches are there? 	2	3
 Q2: What are their pitches? 	C4/G4	C4/F4/A4
 Q3: Can you find a pitch in Chord 1 and a pitch in Chord 2 that are played 	Clarinet G4 Horn C4	Clarinet A4 Viola F4 Horn C4
by the same instrument?		

We humans are amazing!

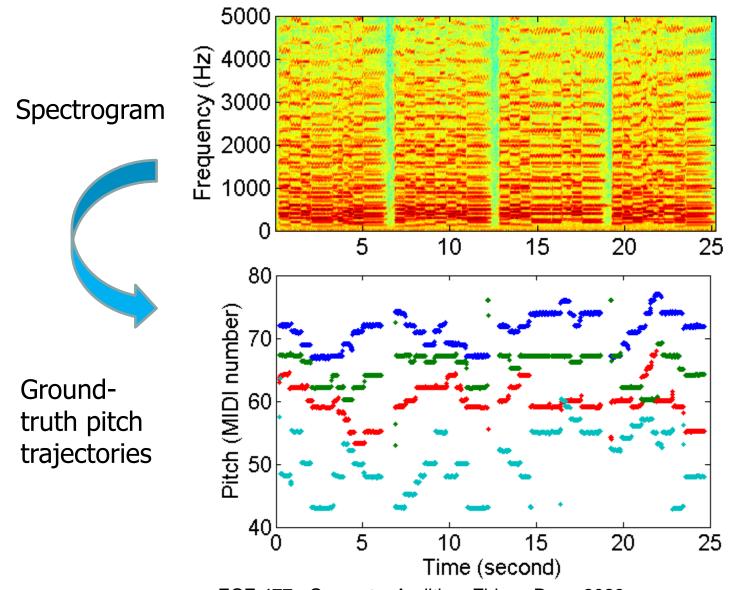
- "In Rome, he (14 years old) heard Gregorio
 Allegri's *Miserere* once in performance in the Sistine
 Chapel. He wrote it out
 entirely from memory, only returning to correct
 minor errors..."
 - -- Gutman, Robert (2000). *Mozart: A Cultural Biography*

Wolfgang Amadeus Mozart

•Can we make computers compete with Mozart??

ECE 477 - Computer Audition, Zhiyao Duan 2023

Our Task



ECE 477 - Computer Audition, Zhiyao Duan 2023

10

Subtasks in Multi-pitch Analysis

Three levels according to MIREX:

- Level 1: Multi-pitch Estimation (MPE)
 - Estimate pitches and polyphony in each time frame
- Level 2: Note Tracking
 - Track pitches within a note
- Level 3: Streaming (timbre tracking)
 - Estimate a pitch trajectory for each source (instrument) across multiple notes

Recent Methods

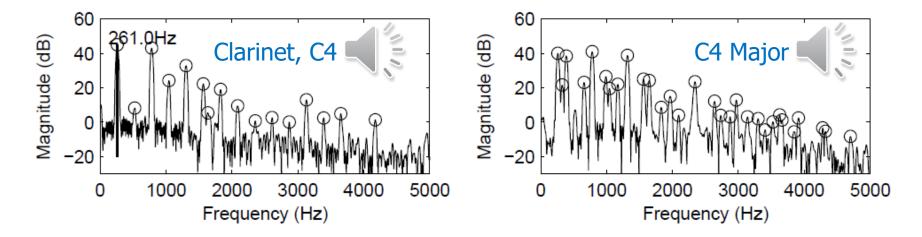
- Level 1: Multi-pitch Estimation
 - Klapuri'03, Goto'04, Davy'06, Klapuri'06, Yeh'05, Emiya'07, Pertusa'08, Duan'10, etc.
- Level 2: Note Tracking
 - Ryynanen'05, Kameoka'07, Poliner'07, Lagrange'07, Chang'08, Benetos'11, Cogliati'16, Ewert'17, Hawthorne'18, etc.
- Level 3: Streaming (timbre tracking)
 - Vincent'06, Bay'12, Duan'14

Level 1: Multi-pitch Estimation

Estimate pitches in each single frame

Multi-pitch Estimation (MPE)

• Why difficult?



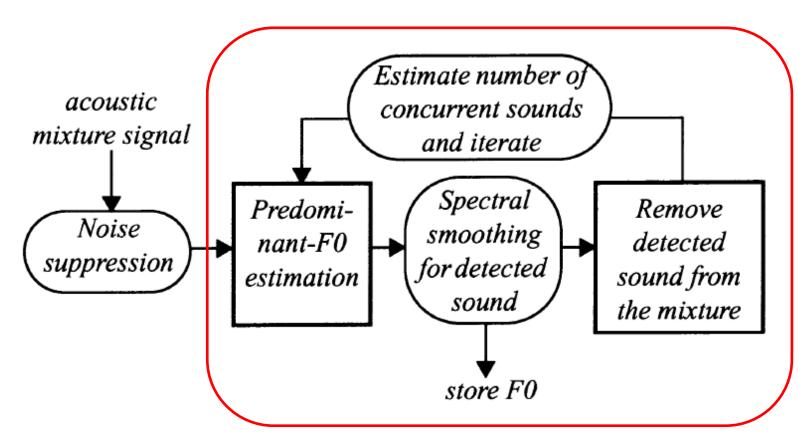
- Overlapping harmonics
 - C4 (46.7%), E4 (33.3%), G4 (60%)
- How to associate the 28 significant peaks to sources?
- Instantaneous polyphony estimation
- Large hypothesis space

Two Methods at Level 1

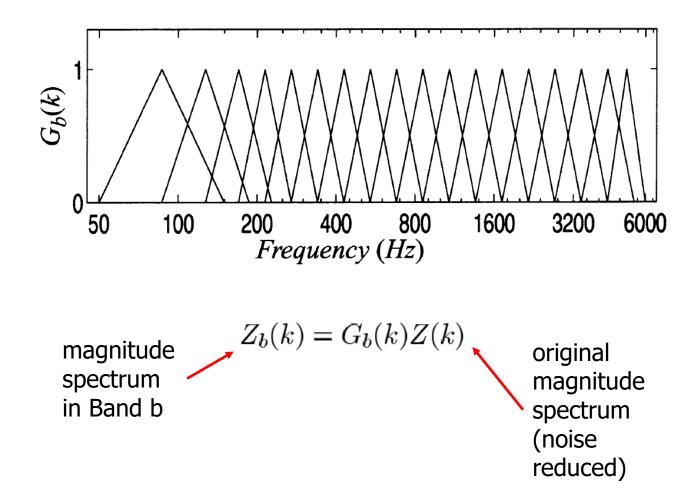
- Iterative spectral subtraction – [Klapuri, 2003]
- Probabilistic modeling of peaks and non-peak regions
 - [Duan et al., 2010]

Iterative Spectral Subtraction

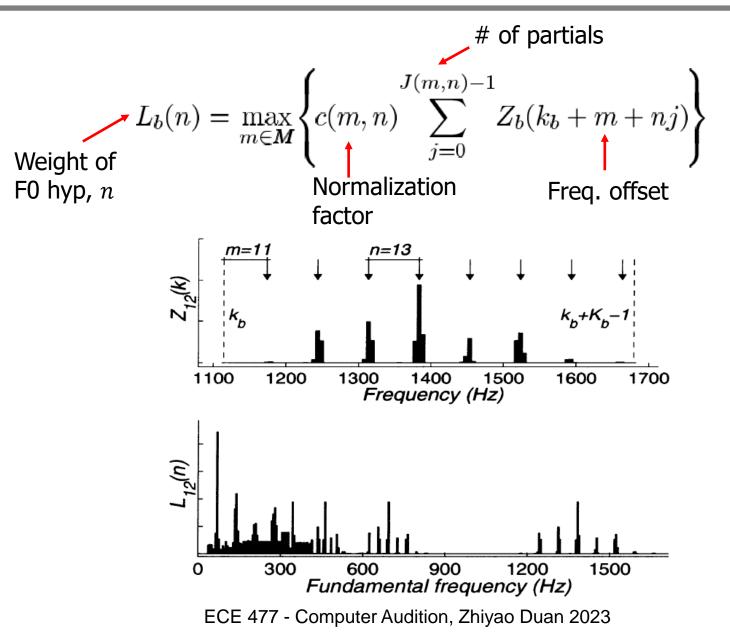
[Klapuri, 2003]



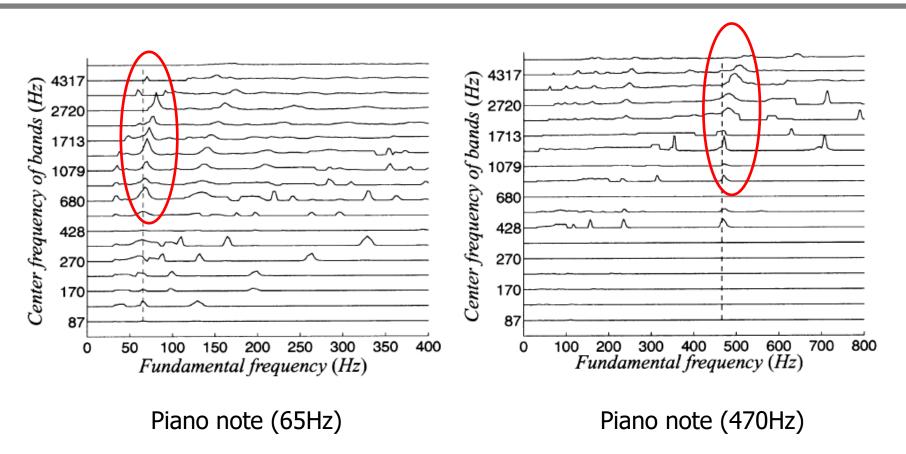
Bandwise F0 Estimation



Bandwise F0 Estimation



Integrate Weights Across Subbands



• Inharmonicity of higher harmonics should be considered

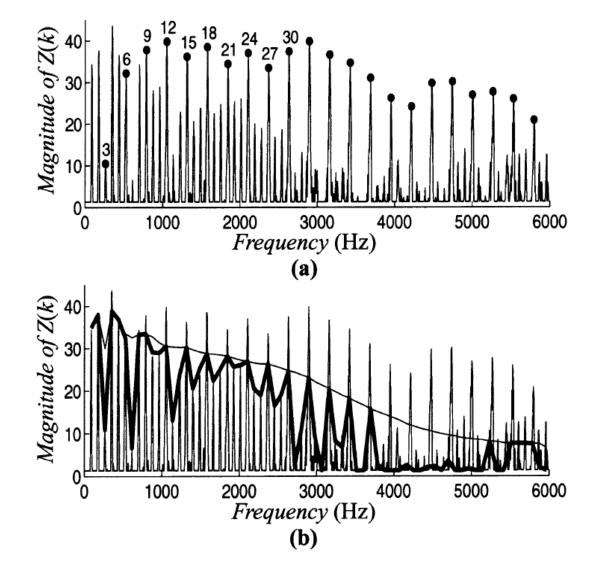
$$f_h = hF\sqrt{1 + (h^2 - 1)\beta}$$

ECE 477 - Computer Audition, Zhiyao Duan 2023

Spectral Subtraction

- Given the estimated predominant F0, we can find out all its harmonics and subtract their energy from the mixture spectrum.
- How much energy should we subtract?
 - All?
 - Some harmonics are overlapped by those of other F0s, hence their energy is larger.

Spectral Smoothness



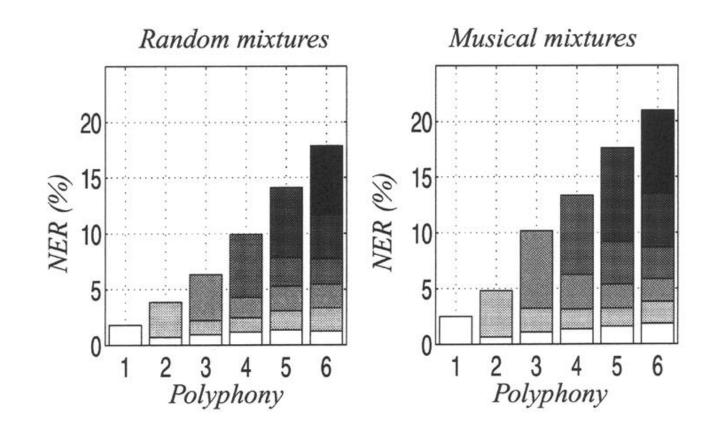
ECE 477 - Computer Audition, Zhiyao Duan 2023

Polyphony Estimation

• I.e., when to stop the iterations?

• Stop if the energy of the harmonics of the estimated predominant F0 is smaller than a threshold.

Error Rate



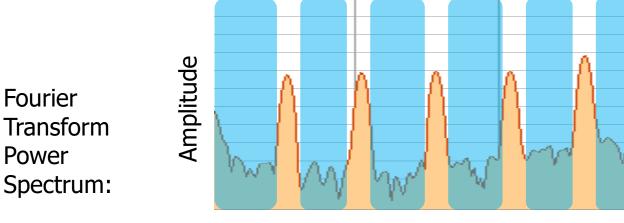
• More errors in later iterations

Discussions

- Advantages
 - Simple idea
 - Fast algorithm
 - Handles inharmonicity
- Disadvantages
 - Spectra in later iterations are severely corrupted
 - Spectral smoothness is not enough to determine the amount of energy to subtract
- Why bandwise estimation?

Probabilistic Modeling of Peaks

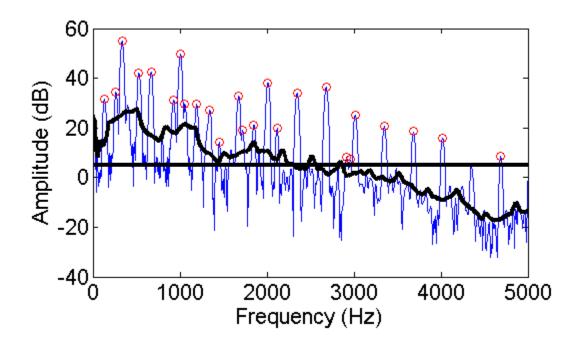
- A maximum likelihood estimation method $\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} p(\boldsymbol{\theta}|\boldsymbol{\theta}) \quad \text{[Duan et al., 2010]}$ Best pitch estimate (a set of pitches) Observed power spectrum Pitch hypothesis, (a set of pitches)
- Spectrum: peaks & the non-peak region



Frequency ECE 477 - Computer Audition, Zhiyao Duan 2023

Peaks / Non-peak Region

• Peaks: ideally correspond to harmonics



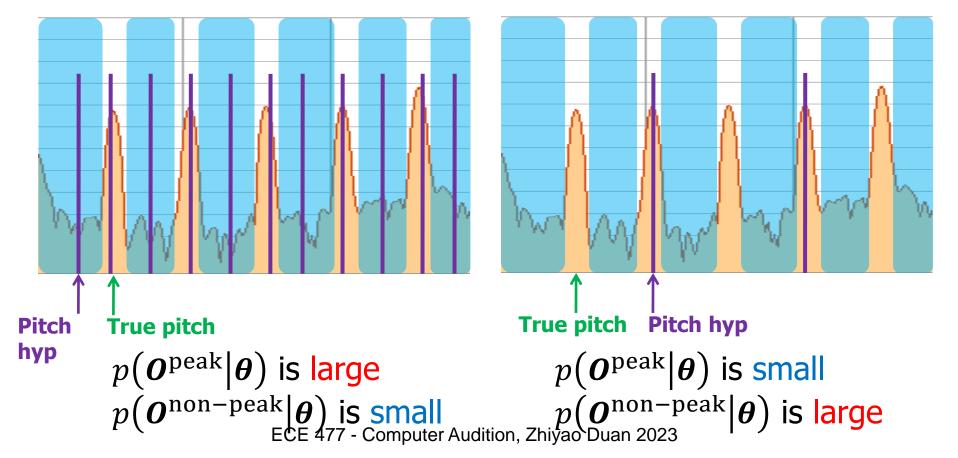
• Non-peak region: frequencies further than a threshold from any peak

Likelihood as Dual Parts

$$p(\boldsymbol{\theta}|\boldsymbol{\theta}) = p(\boldsymbol{\theta}^{\text{peak}}|\boldsymbol{\theta}) \cdot p(\boldsymbol{\theta}^{\text{non-peak}}|\boldsymbol{\theta})$$

Probability of observing these peaks: $(f_k, a_k), k = 1, ..., K$.

Probability of not having any harmonics in the non-peak region

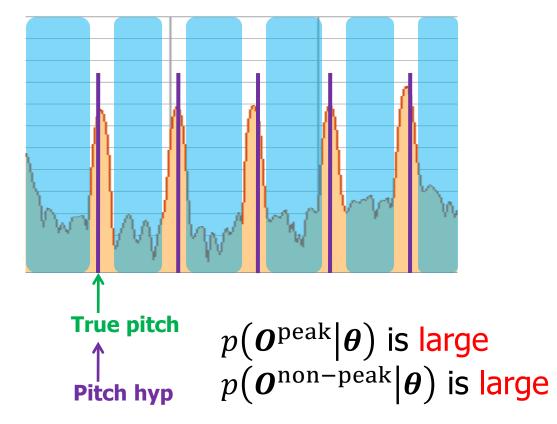


Likelihood as Dual Parts

$$p(\boldsymbol{\theta}|\boldsymbol{\theta}) = p(\boldsymbol{\theta}^{\text{peak}}|\boldsymbol{\theta}) \cdot p(\boldsymbol{\theta}^{\text{non-peak}}|\boldsymbol{\theta})$$

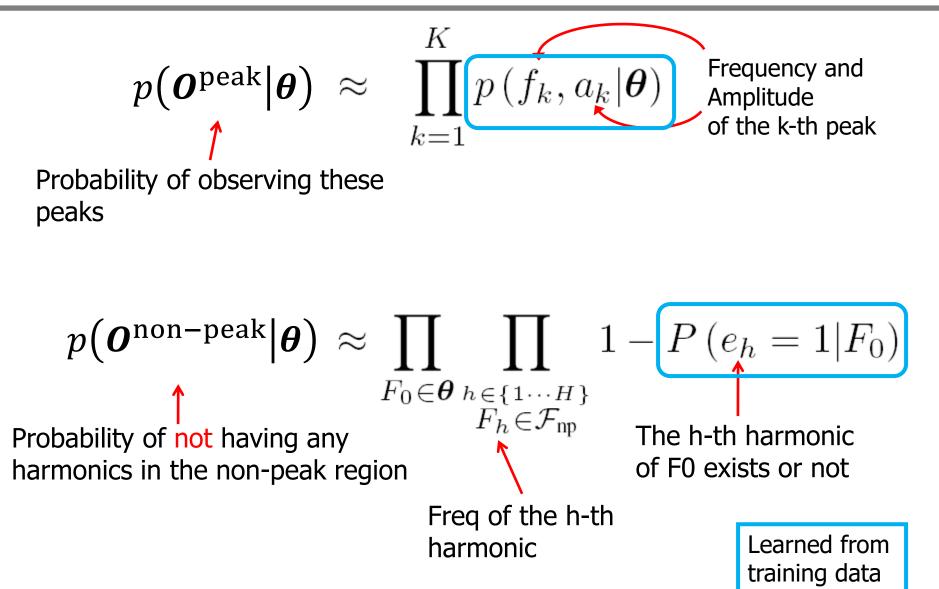
Probability of observing these peaks: $(f_k, a_k), k = 1, ..., K$.

Probability of not having any harmonics in the non-peak region



ECE 477 - Computer Audition, Zhiyao Duan 2023

Likelihood Models



Model Training

- For polyphonic music
 - 3000 random chords of polyphony 1 to 6
 - Mixed using note samples from 16 instruments with pitch ranges from C2 (65 Hz) to B6 (1976 Hz)

- For multi-talker speech
 - 500 speech excerpts with 1-3 simultaneous talkers
 - Mixed from single-talker speech

• Obtained ground-truth pitches before mixing

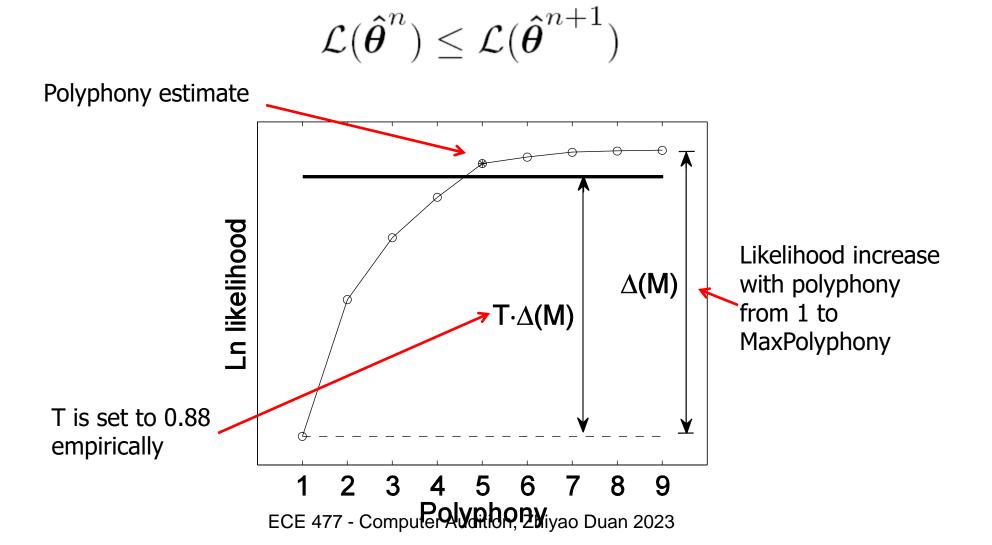
Greedy Search Algorithm

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} p(\boldsymbol{\theta} | \boldsymbol{\theta})$$

- Parameter space is too big for exhaustive search
- Greedy search algorithm
 - Initialize $\theta = \emptyset$
 - For i = 1 to *MaxPolyphony*
 - Add a pitch to θ , s.t. likelihood increases
 - End
 - Estimate polyphony N
 - Return the first N pitches of $\boldsymbol{\theta}$

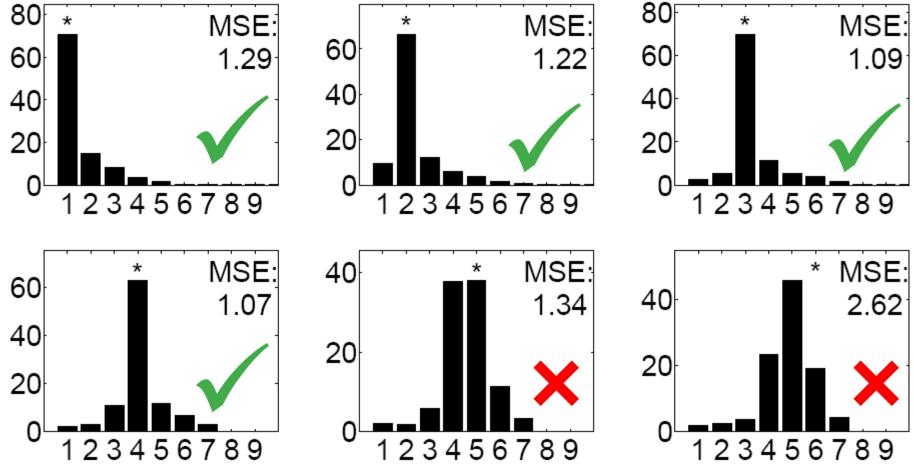
Polyphony Estimation

• Likelihood increases with estimated polyphony



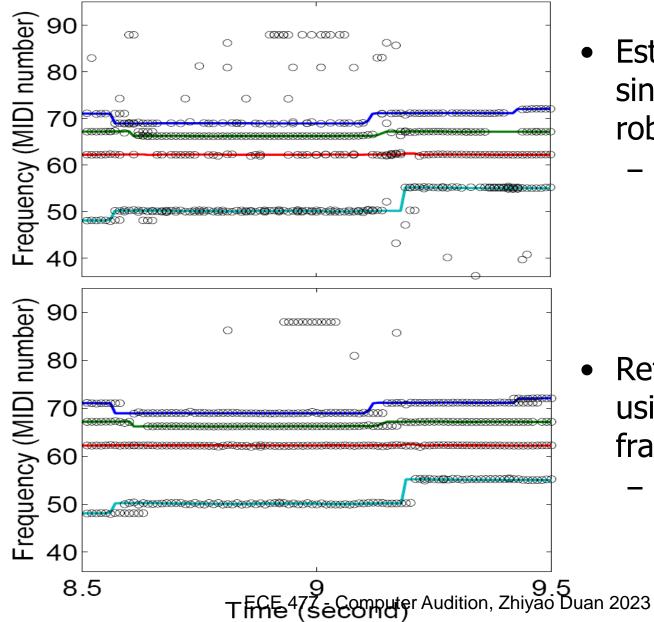
Experiments – Polyphony Estimation

• 6000 musical chords mixed using notes unseen in training data (1000 for each polyphony)



ECE 477 - Computer Audition, Zhiyao Duan 2023

Post Processing



- Estimation in each single frame is not robust
 - Insertion, deletion and substitution errors

- Refine estimates using neighboring frames
 - Only keep consistent estimates

Discussions

- Advantages
 - Model parameters can be learned from training data

- Disadvantages
 - Assumes conditional independence of peak amplitudes, given F0s
 - Doesn't consider the relation between peak amplitudes, e.g., spectral smoothness

Level 2: Note Tracking

Estimate a pitch trajectory for each note

Two Methods at Level 2

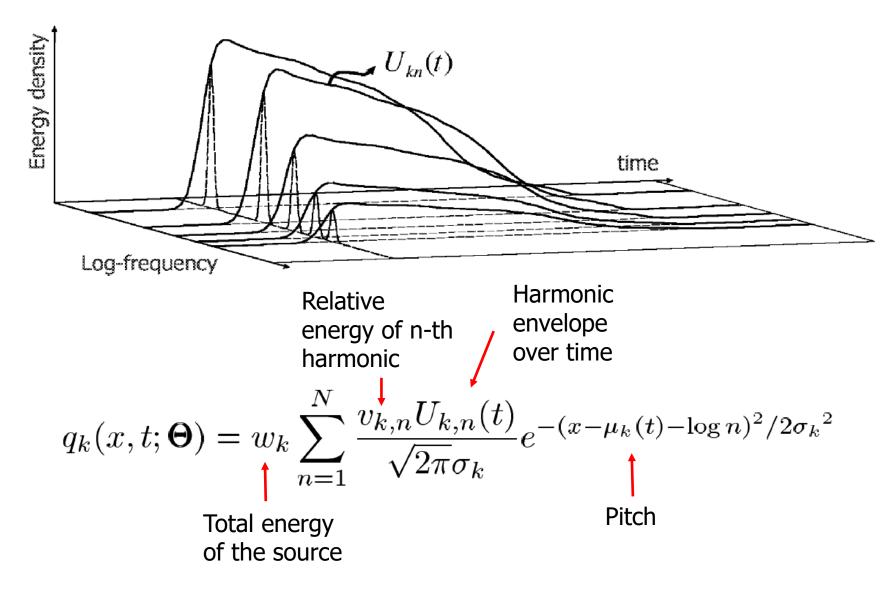
- Probabilistic modeling of the spectral-temporal content a note of a source
 - [Kameoka, et al., 2007]

- Classification-based piano note transcription
 - [Poliner & Ellis, 2007]
 - [Hawthorne, et al., 2018]

[Kameoka et al, 2007]

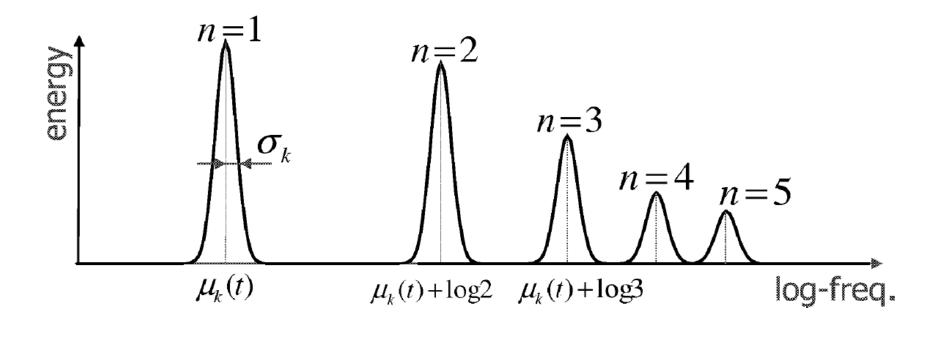
- Jointly estimates pitch, intensity, onset, duration of notes.
- Detailed parametric model for the spectral content of a note of a source
- Approximating the spectrogram with superimposed HTC source models

HTC Source Model



ECE 477 - Computer Audition, Zhiyao Duan 2023

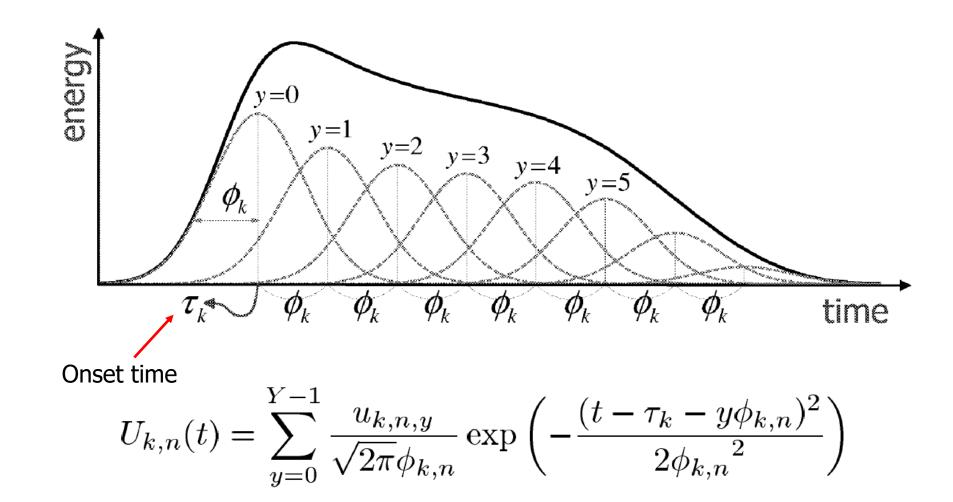
The Model in A Single Frame



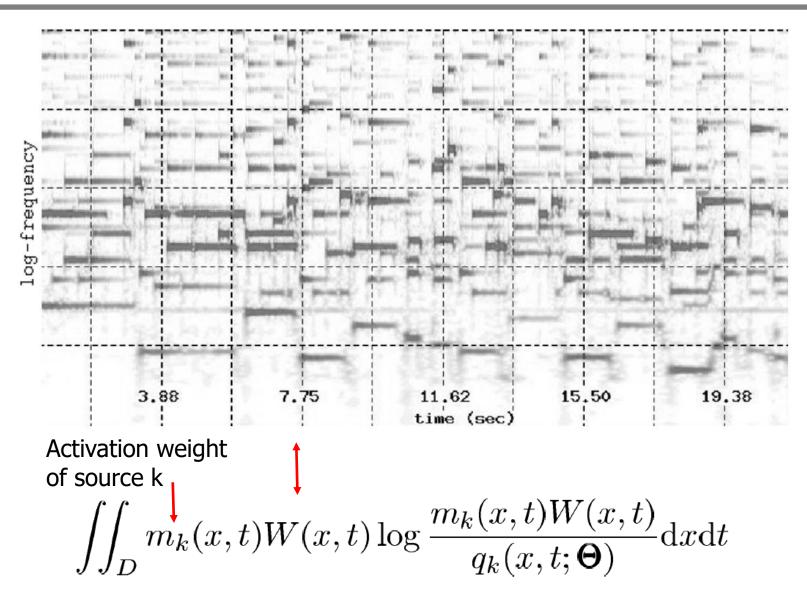
$$q_k(x,t;\Theta) = w_k \sum_{n=1}^{N} \frac{v_{k,n} U_{k,n}(t)}{\sqrt{2\pi}\sigma_k} e^{-(x-\mu_k(t)-\log n)^2/2\sigma_k^2}$$

ECE 477 - Computer Audition, Zhiyao Duan 2023

Harmonic Envelope



Reconstruction using HTC models



ECE 477 - Computer Audition, Zhiyao Duan 2023

The Unknowns

- Model parameters
 - Pitch, onset time, harmonic width, harmonic envelope over time, duration, etc.
- Latent variable
 - Activation weights of sources
- EM algorithm

Discussions

- Advantages
 - Very detailed model
 - Jointly estimates pitch, onset, duration, etc.

- Disadvantages
 - Model is very complicated

Classification-based Piano Note Transcription

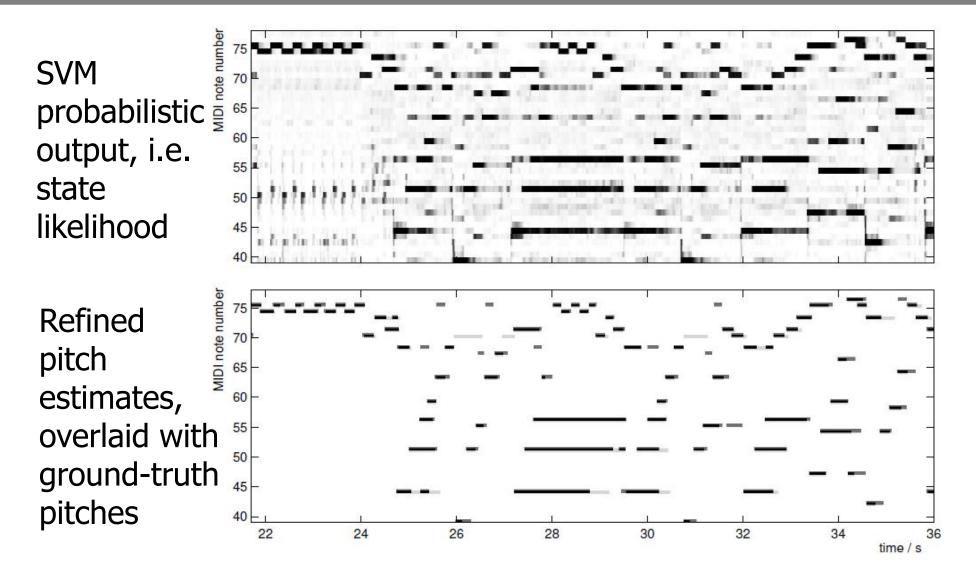
[Poliner & Ellis, 2007]

- Train 88 (one-versus-all) SVM classifiers, one for each key of piano, from training audio frames
- Multi-label classification on each frame of the test audio
- Data: MIDI synthesized audio + Yamaha Disklavier playback grand piano
- Feature: a part of the magnitude spectrum

HMM Post Processing

- 88 HMMs, one for each key
- 2 states: the pitch (key) is on/off
- Transition probability: learned from training data
- Observation probability (state likelihood): the probabilistic output of SVMs
- Viterbi algorithm to refine pitch estimates

HMM Post Processing Result



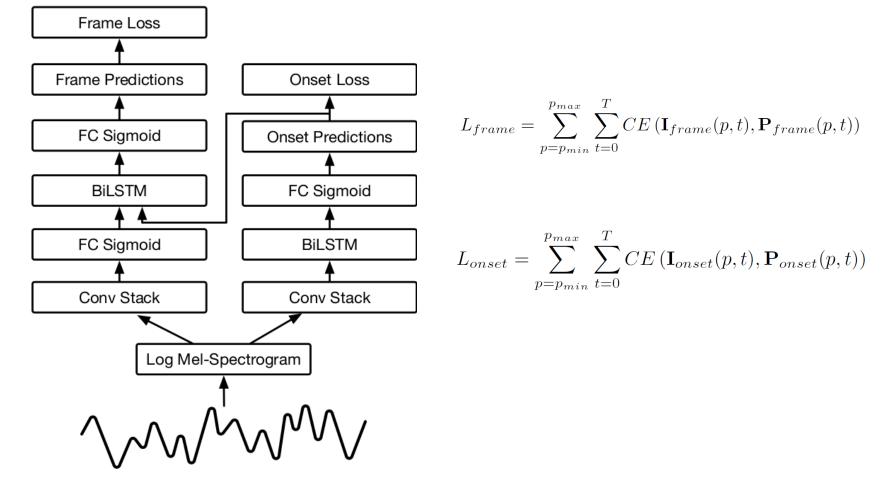
ECE 477 - Computer Audition, Zhiyao Duan 2023

Discussions

- Advantages
 - The first classification-based transcription method
 - Simple idea
 - Easy to implement
- Disadvantages
 - The classification and post-processing of piano keys are performed totally independently
 - Induces more octave errors

Classification-based Piano Note Transcription

[Harthorne et al., 2018]



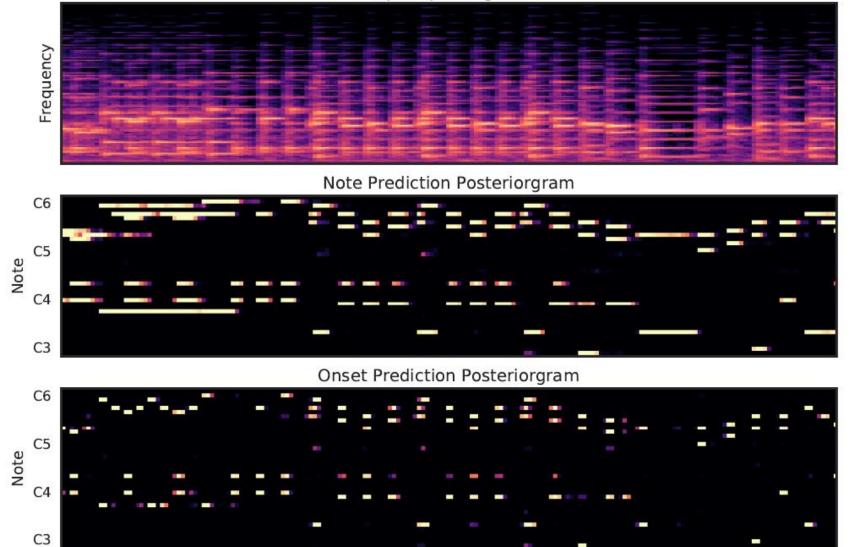
ECE 477 - Computer Audition, Zhiyao Duan 2023

Model Training

- Training data
 - MAPS dataset: MIDI synthesized audio + Yamaha Disklavier playback grand piano
- Trained for 5 hours on 3 P100 GPUs

Example Output

Input Spectrogram



ECE 477 - Computer Audition, Zhiyao Duan 2023

Results

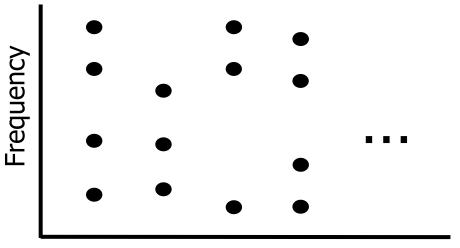
	Frame			Note			Note w/ offset			Note w/ offset & velocity		
	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
Sigtia et al., 2016 [18]	71.99	73.32	72.22	44.97	49.55	46.58	17.64	19.71	18.38	_		_
Kelz et al., 2016 [13]	81.18	65.07	71.60	44.27	61.29	50.94	20.13	27.80	23.14			—
Melodyne (decay mode)	71.85	50.39	58.57	62.08	48.53	54.02	21.09	16.56	18.40	10.43	8.15	9.08
Onsets and Frames	88.53	70.89	78.30	84.24	80.67	82.29	51.32	49.31	50.22	35.52	30.80	35.39

Level 3: Multi-pitch Streaming

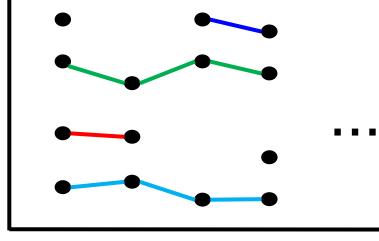
Estimate a pitch trajectory for each harmonic source

A 2-stage System

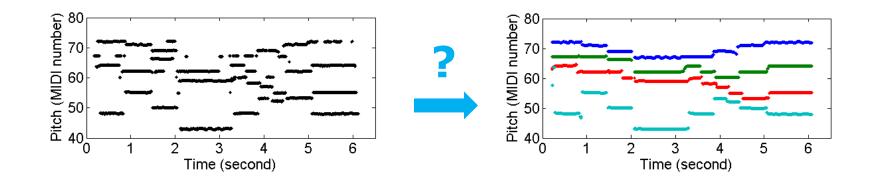
- Stage 1: Estimate pitches in each single time frame
 - [Duan et al., 2010]



- Stage 2: Connect pitch estimates across frames into pitch trajectories
 - [Duan et al., 2014]



How to Stream Pitches?



- Label pitches by pitch order in each frame, i.e. highest, second highest, third highest, ...?
- Connect pitches by continuity?
 - Only achieves note tracking

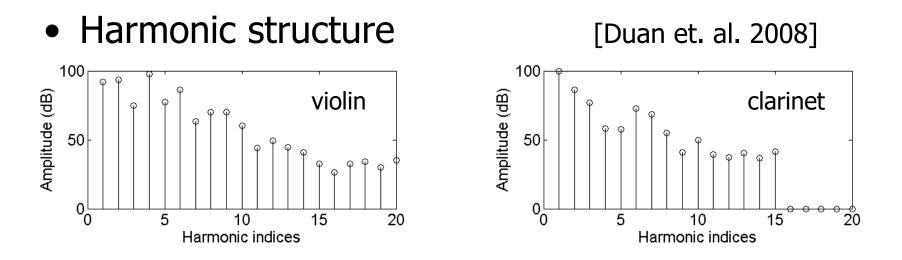
Clustering Pitches by "Timbre"!

• Human use timbre to discriminate and track sound sources

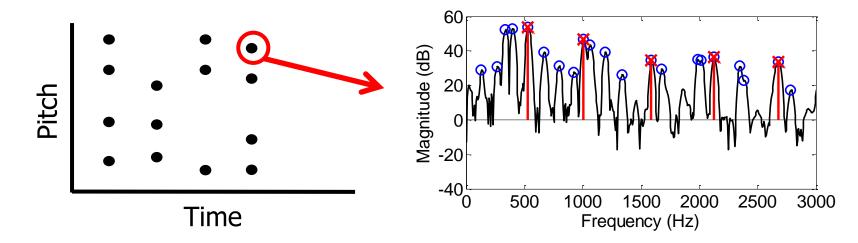
"Timbre is that attribute of sensation in terms of which a listener can judge that two sounds having the same **loudness** and **pitch** are dissimilar."

---- American Standards Association

How to Represent Timbre?

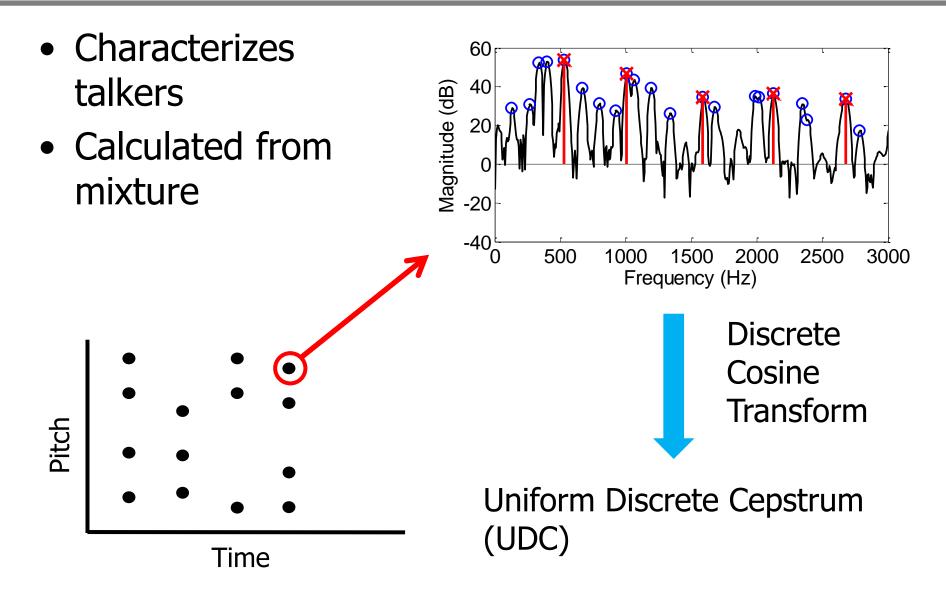


• Calculate for each pitch from the mixture



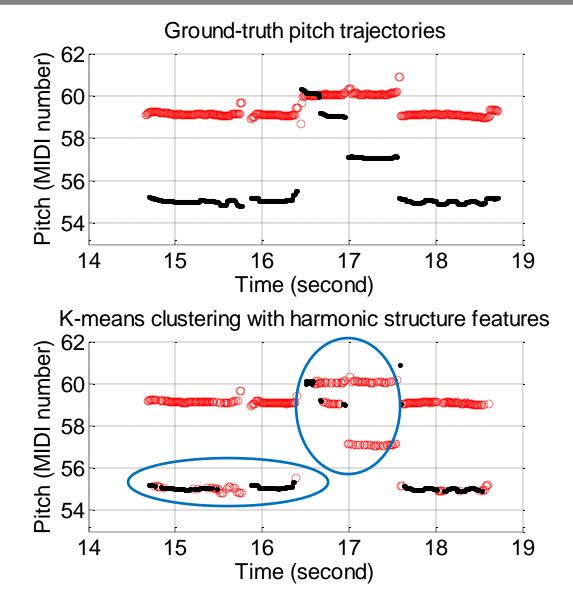
ECE 477 - Computer Audition, Zhiyao Duan 2023

Timbre Feature for Talkers



ECE 477 - Computer Audition, Zhiyao Duan 2023

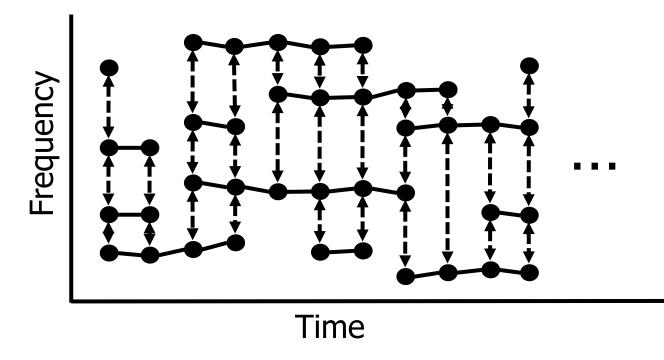
Clustering by timbre is not enough



ECE 477 - Computer Audition, Zhiyao Duan 2023

Use Pitch Locality Constraints

- Cannot-link: between simultaneous pitches (only for monophonic instruments)
- Must-link: between pitch estimates close in both time and frequency



ECE 477 - Computer Audition, Zhiyao Duan 2023

Constrained Clustering

- Objective: minimize timbre inconsistency
- Constraints: pitch locality
 - Inconsistent constraints: caused by incorrect pitch estimates, interweaving pitch trajectories, etc.
 - Heavily constrained: nearly every pitch estimate is involved in at least one constraint
- Algorithm: iteratively update the clustering s.t.
 - The objective monotonically decreases
 - The set of satisfied constraints monotonically expands

The Proposed Algorithm

- *f*: objective function; *C*: all constraints;
- Π_n : clustering in *n*-th iteration;
- C_n : {constraints satisfied by Π_n };

• It converges to some local minimum $< \Pi', C' >$.

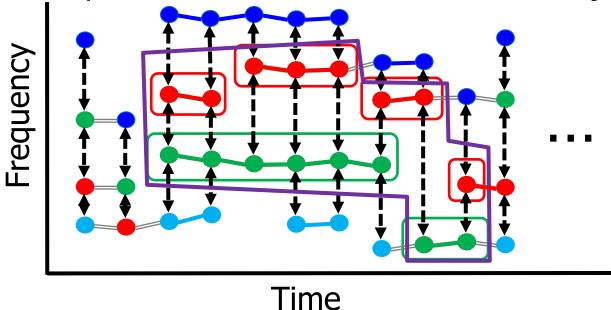
 $f(\Pi_0) > f(\Pi_1) > \dots > f(\Pi')$

 $\mathcal{C}_0 \subseteq \mathcal{C}_1 \subseteq \cdots \subseteq \mathcal{C}'$

ECE 477 - Computer Audition, Zhiyao Duan 2023

Find A New Clustering to...

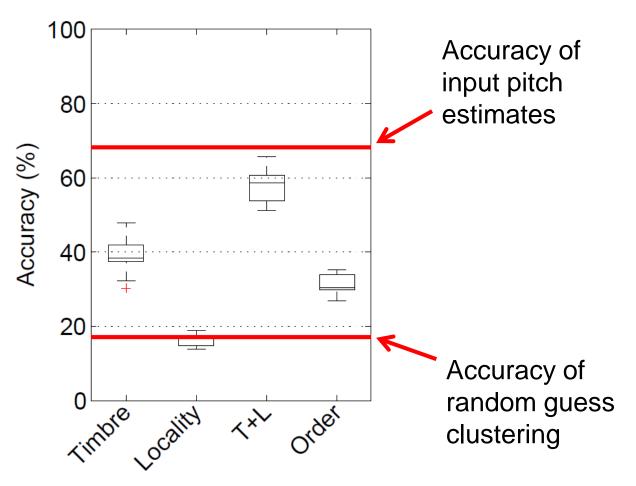
- 1. Decrease the objective function
- 2. Satisfy satisfied constraints
- Swap set: a connected graph between two clusters by already satisfied constraints
- One more must link is satisfied now
- Try all swap sets to find one that decreases objective



ECE 477 - Computer Audition, Zhiyao Duan 2023

Timbre Objective & Locality Constraints

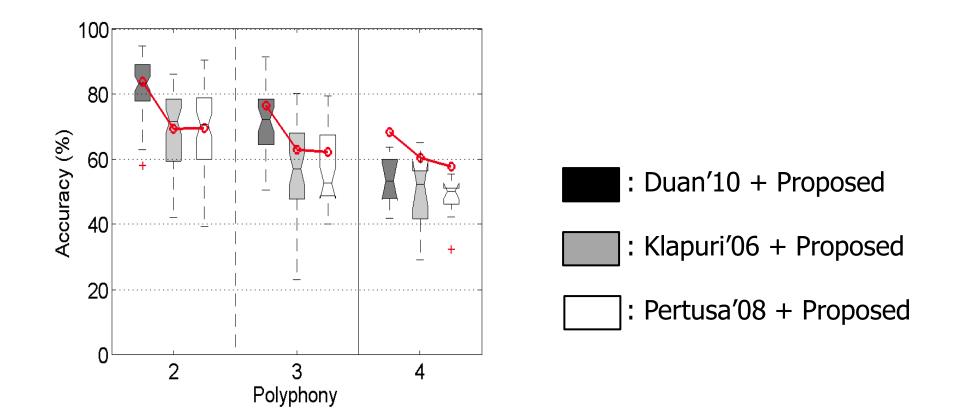
• Results on 10 quartets played by violin, clarinet, saxophone and bassoon



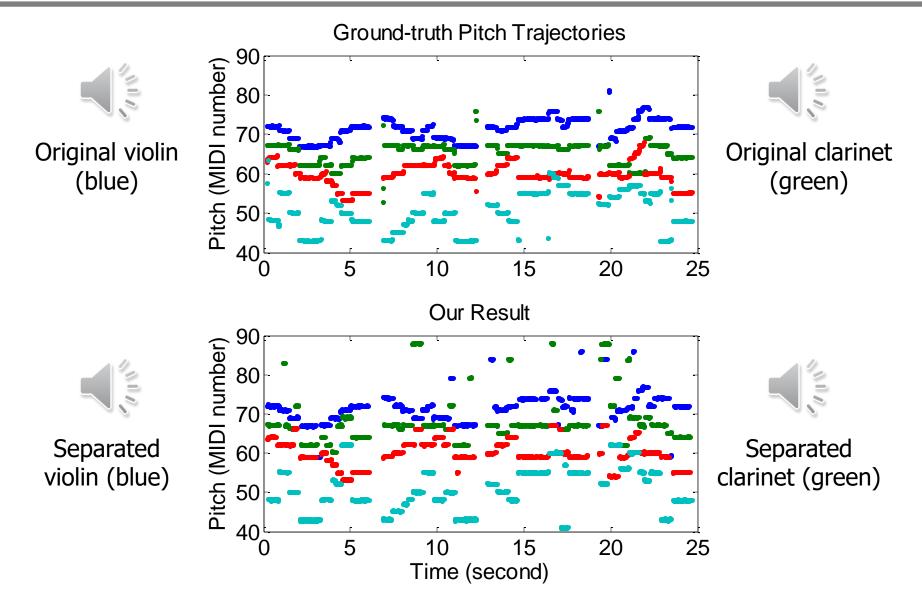
ECE 477 - Computer Audition, Zhiyao Duan 2023

Works with Different MPE Methods

• Results on 60 duets, 40 trios, and 10 quartets



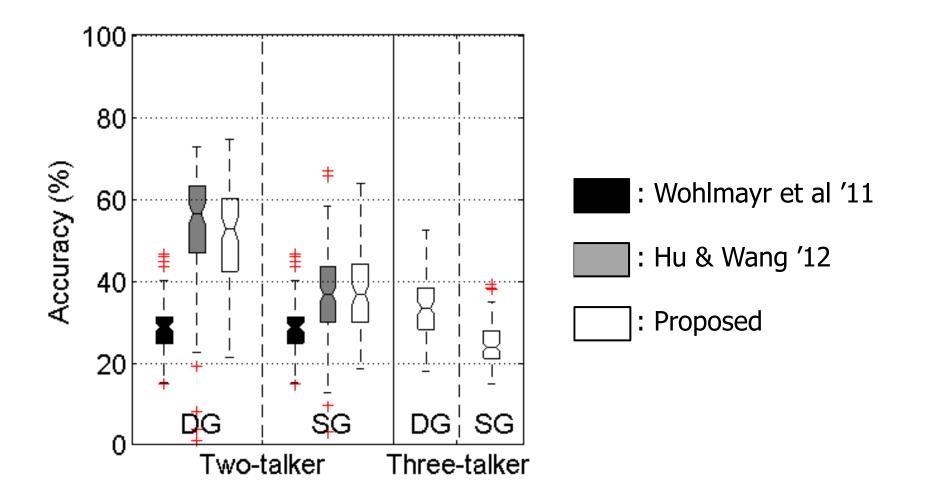
Example on Music



ECE 477 - Computer Audition, Zhiyao Duan 2023

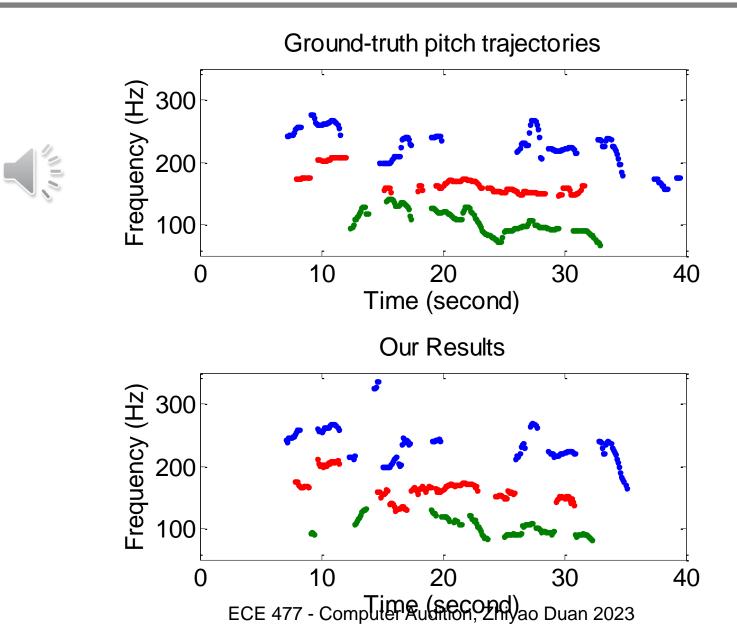
Comparisons on Speech

• 400 2-talker and 3-talker speech excerpts



ECE 477 - Computer Audition, Zhiyao Duan 2023

Example on Speech



65

Discussions

- Advantages:
 - Able to stream pitches across notes
 - Considers both timbre and pitch location info

- Disadvantages:
 - Algorithm is slow and complicated.
 - Constraints are binary.
 - Cannot deal with polyphonic instruments e.g. piano and guitar.